please dont rip this site

PIC Microcontoller Radix Math Method

Binary to BCD packed and ASCII, 24 bit to 8 or 9 digits with sign, and decimal point

from Tony Kübek tony.kubek at flintab.com

...it's for 24 bit signed variable, then I cannot output a variable at a time ( supposed to go inside an int handler ), therefore I'm using a 9 byte string to store the result, furthermore for the decimal point and supressing of leading zeroes I needed 1 byte and 2 bit variables. ... Its a bit of 'bloatware', requires about 290 ! instructions but thats efficient enough for me, I might get back to hammer on it when I've finished off the other bits I'm starting with now. I think it goes around 480 instruction executed worst case, and all the way down to 250 something for best case. Also I added a minor conditional that makes execution a tad faster for 20 bit numbers ( as my app will have about 99 % in this range ) to the expence of more code and additional execution for larger numbers.
;**********************************************************************
;   This file is a basic code template for assembly code generation   *
;   on the PICmicro PIC16F877. This file contains the basic code      *
;   building blocks to build upon.                                    *  
;                                                                     *
;   If interrupts are not used all code presented between the ORG     *
;   0x004 directive and the label main can be removed. In addition    *
;   the variable assignments for 'w_temp' and 'status_temp' can       *
;   be removed.                                                       *                         
;                                                                     *
;   Refer to the MPASM User's Guide for additional information on     *
;   features of the assembler (Document DS33014).                     *
;                                                                     *
;   Refer to the respective PICmicro data sheet for additional        *
;   information on the instruction set.                               *
;                                                                     *
;   Template file assembled with MPLAB V4.00 and MPASM V2.20.00.      *
;                                                                     *
;**********************************************************************
;                                                                     *
;    Filename:	    	MathTest.asm 24bit signed binary->ASCII w. dp *
;    Date: 		2000-03-31                                    *
;    File Version:  	0.1B                                          *
;                                                                     *
;    Author: 		Tony Kübek                                    *
;    Company:                                                         *
;                                                                     * 
;                                                                     *
;**********************************************************************
;                                                                     *
;    Files required:                                                  *
;                                                                     *
;                                                                     *
;                                                                     *
;**********************************************************************
;                                                                     *
;    Notes:  Tests of binary to ASCII coversion                       *
;            Routines from techref.massmind.org                       *
;	     Originators(16bit): Scott Dattalo and Nikolai Golovchenko*
;            Routine takes 24 bit signed binary number and coverts to *
;            8/9 byte ASCII(true!) decimal string with decimal point  *
;	     and minus sign as the first byte ( if negative ).        * 
;	     24 bit variabel is stored in last three string bytes     *
;	     These are 'destroyed' during processing	              *
;	     Leading zeroes are surpressed (conv. to space)           *
;    	     Resources needed:					      *
;				DpPlacement 1 byte + 1 bit	      *
;		                PrevIsChar 1 bit ,prev. zero was surpressed*
;			       	ASCII string of 9 bytes               *
;**********************************************************************


	list      p=16f877            ; list directive to define processor
	#include <p16f877.inc>        ; processor specific variable definitions
	
	__CONFIG _CP_OFF & _WDT_ON & _BODEN_ON & _PWRTE_ON & _RC_OSC & _WRT_ENABLE_ON & _LVP_OFF& _DEBUG_OFF & _CPD_OFF 

; '__CONFIG' directive is used to embed configuration data within .asm file.
; The lables following the directive are located in the respective .inc file.
; See respective data sheet for additional information on configuration word.

#define TEST_SMALL_NUMBER	; if defined then tests are performed
		                ; to see number is less than +/-1048575 ( 20 bit )
			  	; makes routine a little faster for thoose numbers
				; to the expence of more code 
				; and adds some cycles to all numbers above if used
				; but can deduct upto 62 cycles on smaller numbers  

#define DECIMAL_POINT	0x2E    ; '.'
#define BYTE_OFFSET	0x30    ; start decimal ASCII numbers
#define SIGN_NEGATIVE	0x2D    ; '-'

;***** VARIABLE DEFINITIONS
	CBLOCK	0x20			; start userram bank 0
	
	BitVars:1			; used for dp-bit variable
	OutPut:9			; 8 used if no dp, else 9
	DpPlacement:1			; where to put dp, counted from start, min=1
					; note an added bonus here ! as this var is
					; located directly after the string and will
					; 'always' be = 0x00(after conversion), 
					; you have an 'free' null terminator

	ENDC



w_temp        EQU     0x70        ; variable used for context saving 
status_temp   EQU     0x71        ; variable used for context saving


#define _DpUsed		BitVars,0 ; decimal point has been placed
#define _PrevIsSpace	BitVars,1 ; previous byte/digit is 'converted' to space

#define Sample  OutPut+6 	  ; Note !! to save ram, 24 bit variable is stored
                                  ; in highest three byte in 9 byte string






;**********************************************************************
		ORG     0x000             ; processor reset vector
		clrf    PCLATH            ; ensure page bits are cleared
  		goto    MAIN              ; go to beginning of program


		ORG     0x004             ; interrupt vector location
		movwf   w_temp            ; save off current W register contents
		movf	STATUS,w          ; move status register into W register
		movwf	status_temp       ; save off contents of STATUS register


; isr code can go here or be located as a call subroutine elsewhere


		movf    status_temp,w     ; retrieve copy of STATUS register
		movwf	STATUS            ; restore pre-isr STATUS register contents
		swapf   w_temp,f
		swapf   w_temp,w          ; restore pre-isr W register contents
		retfie                    ; return from interrupt



MAIN




;************************ Tony test 24 bit->8/9 digit ASCII with decimal point
; code with TEST_SMALL_NUMBER: (about)290 instructions ( excluding variable setup code )
;
; True ASCII conversion, variable decimalpoint, surpress leading zeroes
; 24 bit variable is handled as SIGNED!
;************************************
        CLRF 	BitVars

	; dp=1->dp=7(no dp), adds approx 50 cycles, i.e. dp=1 least cycles
	MOVLW	1	; note dp  = 1 = between first and second digit
			; dp = 7 between the last and second last digit
			; if dp >= 7, dp = 0 then last digit is = 0x00
	MOVWF	DpPlacement	

	MOVLW	BYTE_OFFSET	; preset with ASCII offset
	MOVWF	OutPut
	MOVWF	OutPut+1
	MOVWF	OutPut+2
	MOVWF	OutPut+3
	MOVWF	OutPut+4
	MOVWF	OutPut+5
	BCF	OutPut,4	; clear bit, makes first char 'space'


	; OutPut+6 - OutPut+8 will contain 24 bit sample, LSB in OutPut+8
	; ** NOTE ** Sample = OutPut+6, Sample+1 = OutPut+7, Sample+2 = OutPut+8
	; Sample is defined as a separate name as it makes the code easier to read


;	test number : 1235783 = 0x12DB47 - ok ! cycles approx: 301 -350 depending on dp placment
; 	Note ! This with TEST_SMALL_NUMBER, without deduct  10 cycles
;	MOVLW	0x47
;	MOVWF	Sample+2
;	MOVLW	0xDB
;	MOVWF	Sample+1	 
;	MOVLW	0x12
;	MOVWF	Sample

;	test number : -1235783 = 0xED24B9 - ok ! cycles approx: 311 -360 depending on dp placment
; 	Note ! This with TEST_SMALL_NUMBER, without deduct  10 cycles
;	MOVLW	0xB9
;	MOVWF	Sample+2
;	MOVLW	0x24
;	MOVWF	Sample+1	 
;	MOVLW	0xED
;	MOVWF	Sample

;	test number : 60900 = 0x00EDE4 - ok ! cycles approx: 315 -371 depending on dp placment
; 	Note ! This with TEST_SMALL_NUMBER, without add  63 cycles
;	MOVLW	0xE4
;	MOVWF	Sample+2
;	MOVLW	0xED
;	MOVWF	Sample+1	 
;	MOVLW	0x00
;	MOVWF	Sample

;	test number : -60900 = 0xFF121C - ok ! cycles approx: 325 -381 depending on dp placment
; 	Note ! This with TEST_SMALL_NUMBER, without add  56 cycles
;	MOVLW	0x1C
;	MOVWF	Sample+2
;	MOVLW	0x12
;	MOVWF	Sample+1	 
;	MOVLW	0xFF
;	MOVWF	Sample



;	test number : 231 = 0xE7 - ok !, cycles approx 244-302 depending on dp placement
; 	NOTE ! With TEST_SMALL_NUMBER, without add 62 cycles

;	MOVLW	0xE7
;	MOVWF	Sample+2
;	MOVLW	0x00
;	MOVWF	Sample+1	 
;	MOVLW	0x00
;	MOVWF	Sample

;	test number : -1 = 0xFFFFFF - ok !, cycles approx:262-326 depending on dp placement
; 	This with TEST_SMALL_NUMBER, without add 62 cycles
;	

;	MOVLW	0xFF
;	MOVWF	Sample+2
;	MOVLW	0xFF
;	MOVWF	Sample+1	 
;	MOVLW	0xFF
;	MOVWF	Sample

;	test number : 1048575 = 0x0FFFFF - ok !, cycles approx: 297-348 depending on dp placement
;	this with TEST_SMALL_NUMBER, without add 8 cycles
;	MOVLW	0xFF
;	MOVWF	Sample+2
;	MOVLW	0xFF
;	MOVWF	Sample+1	 
;	MOVLW	0x0F
;	MOVWF	Sample

;	test number : 1000000 = 0x0F4240 - ok !, cycles approx: 291-350 depending on dp placement
;	this with TEST_SMALL_NUMBER, without add 8 cycles
;	MOVLW	0x40
;	MOVWF	Sample+2
;	MOVLW	0x42
;	MOVWF	Sample+1	 
;	MOVLW	0x0F
;	MOVWF	Sample

;	test number : 8388607 = 0x7FFFFF - ok !, cycles approx: 394-445 depending on dp placement
;	this with TEST_SMALL_NUMBER, without add 8 cycles
;	MOVLW	0xFF
;	MOVWF	Sample+2
;	MOVLW	0xFF
;	MOVWF	Sample+1	 
;	MOVLW	0x7F
;	MOVWF	Sample
;	test number : -7099999 = 0x93A9A1 - ok !, cycles approx:429-480 depending on dp placement
;	this with TEST_SMALL_NUMBER, without add 8 cycles
	MOVLW	0xA1
	MOVWF	Sample+2
	MOVLW	0xA9
	MOVWF	Sample+1	 
	MOVLW	0x93
	MOVWF	Sample


TEST_NEGATIVE
	BTFSS	Sample,7	; test if negative
	IFDEF	TEST_SMALL_NUMBER
	GOTO	TEST_TOPNIBBLE	; nope
	ELSE	
	GOTO	SUB4M		; nope
	ENDIF
	
	; sample is negative
	; make two's complement 
	COMF	Sample+2,F
	COMF	Sample+1,F
	COMF	Sample,F
	MOVLW	1
	ADDWF	Sample+2,F
	SKPNC
	ADDWF	Sample+1,F
	SKPNC
	ADDWF	Sample,F

	MOVLW	SIGN_NEGATIVE
	MOVWF	OutPut		; first digit minus sign

	

	IFDEF	TEST_SMALL_NUMBER  ; test for small numbers and skips some loops
				   ; use if number is often in 0-1048575 range ( negative or not)
				   ; i.e. 0x000000 - 0x0FFFFF ( 2.5 bytes 20 bits )
	
TEST_TOPNIBBLE
	; test if top nibble is zero, i.e. number less than 1048575 ( decimal )
	; if so we can skip to sub300k routine

	MOVF	Sample,w
	ANDLW	0x70      ; Mask out top three bits
	BNZ	SUB4M	  ; nope do full conversion

	; this digit is zero, and dp is not yet set
	; then downshift to space	
	BSF	_PrevIsSpace 
	BCF	OutPut+1,4 
	
	GOTO	SUB300k	     ; continue
	
	ENDIF	 	     ; TEST_SMALL_NUMBER


SUB4M:
        ; subtract 4 million from sample
	MOVLW 	4
        ADDWF 	OutPut+1, f
        MOVLW 	low(4000000)
        SUBWF 	Sample+2, f

	MOVLW 	low(4000000>>8)
        SKPC
	MOVLW 	low(4000000>>8)+1
        SUBWF 	Sample+1, f
	
	MOVLW 	low(4000000>>16)
        SKPC
        MOVLW 	low(4000000>>16) + 1
        SUBWF 	Sample, f


        SKPNC	; overflow, i.e. negative
        GOTO 	SUB4M

ADD1M:
        ; add 1 million to sample
	DECF 	OutPut+1, f
        MOVLW 	low(1000000)
        ADDWF 	Sample+2, f

	MOVLW 	low(1000000>>8)
        SKPNC
        MOVLW 	low(1000000>>8) + 1
        ADDWF 	Sample+1, f

	MOVLW 	low(1000000>>16)
        SKPNC
        MOVLW 	low(1000000>>16) + 1
        ADDWF 	Sample, f
	
	SKPC	; done ?
        GOTO 	ADD1M

	; test for leading zeroes
	MOVLW	BYTE_OFFSET
	SUBWF	OutPut+1,w
	BNZ	SUB300k

	; this digit is zero, and dp is not yet set
	; then downshift to space	
	BSF	_PrevIsSpace 
	BCF	OutPut+1,4 
	

SUB300k:
        ; substract 300 thousand from sample
	MOVLW 	3
        ADDWF 	OutPut+3, f
        MOVLW 	low(300000)
        SUBWF 	Sample+2, f

	MOVLW 	low(300000>>8)
        SKPC
	MOVLW 	low(300000>>8)+1
        SUBWF 	Sample+1, f
	
	MOVLW 	low(300000>>16)
        SKPC
        MOVLW 	low(300000>>16) + 1
        SUBWF 	Sample, f


        SKPNC
        GOTO 	SUB300k

ADD100k
        ; add 100 thousand to sample
	DECF 	OutPut+3, f
        MOVLW 	low(100000)
        ADDWF 	Sample+2, f

	MOVLW 	low(100000>>8)
        SKPNC
        MOVLW 	low(100000>>8) + 1
        ADDWF 	Sample+1, f

	MOVLW 	low(100000>>16)
        SKPNC
        MOVLW 	low(100000>>16) + 1
        ADDWF 	Sample, f
	
	SKPC	; done
        GOTO 	ADD100k
	IFDEF	TEST_SMALL_NUMBER ; if this test enabled it is possible
				  ; to have an overflow here

	; test for overflow ( Output+3 = 10 )

	MOVLW	BYTE_OFFSET+0x0A
	SUBWF	OutPut+3,W
	BTFSS	STATUS,Z	; test if non zero
	GOTO    ADD100k_TstDp

	
	; over flow, result is = 10, second digit = 1, third = 0
	MOVLW	BYTE_OFFSET
	MOVWF	OutPut+3
	BTFSS	_DpUsed		; test if dp already used
	BSF	OutPut+1,0	; if no dp used set this digit to one
	BSF	OutPut+2,0      ; set also third digit to 1 ( in case dp is used )

	; restore previous digit
	BTFSS	_PrevIsSpace
	GOTO	ADD100k_TstDp
	
	BSF	OutPut+1,4
	BCF	_PrevIsSpace

	ENDIF

ADD100k_TstDp:

	; test for dp
	DECFSZ	DpPlacement,F ; test for dp placement
	GOTO   	ADD100k_NoDp   ; no dp yet
	; place dp
	BSF	_DpUsed	    ; dp is used
	MOVLW	DECIMAL_POINT        ;
	MOVWF	OutPut+2    ; dp is third digit	
	
	; restore zero before dp
	BTFSC	_PrevIsSpace
	BSF	OutPut+1,4

	GOTO	SUB30k	    ; continue
	
ADD100k_NoDp:
	; no dp copy back number
	MOVF	OutPut+3,W
	MOVWF	OutPut+2

	; test for leading zeroes
	MOVLW	BYTE_OFFSET
	SUBWF	OutPut+2,w
	BTFSS	STATUS,Z
	BCF	_PrevIsSpace
	BNZ	SUB30k
	
	BTFSS	_PrevIsSpace
	GOTO	SUB30k

	; this digit is zero, and dp is not yet set
	; then downshift to space	
	BSF	_PrevIsSpace 
	BCF	OutPut+2,4 


SUB30k:
      	; subtract 30'000 from sample
	MOVLW 	3
        ADDWF 	OutPut+4, f
        MOVLW 	low(30000)
        SUBWF 	Sample+2, f

	MOVLW 	low(30000>>8)
        SKPC
	MOVLW 	low(30000>>8)+1
        SUBWF 	Sample+1, f
	
	MOVLW 	low(30000>>16)
        SKPC
        MOVLW 	low(30000>>16) + 1
        SUBWF 	Sample, f


        SKPNC	; negative ?
        GOTO 	SUB30k
ADD10k:
        ; add 10'000 to sample

	DECF 	OutPut+4, f
        MOVLW 	low(10000)
        ADDWF 	Sample+2, f

	MOVLW 	low(10000>>8)
        SKPNC
        MOVLW 	low(10000>>8) + 1
        ADDWF 	Sample+1, f

	MOVLW 	low(10000>>16)
        SKPNC
        MOVLW 	low(10000>>16) + 1
        ADDWF 	Sample, f
	
	SKPC	; done ?
        GOTO 	ADD10k
	
	BTFSC	_DpUsed
	GOTO	SUB3k	; dp is already used continue
	
	; test for dp
	DECFSZ	DpPlacement,F ; test for dp placement
	GOTO   	ADD10k_NoDp   ; no dp yet
	; place dp
	BSF	_DpUsed	    ; dp is used
	MOVLW	DECIMAL_POINT        ;
	MOVWF	OutPut+3    ; dp is fourth digit	

	; restore zero before dp
	BTFSS	_PrevIsSpace
	BSF	OutPut+2,4	


	GOTO	SUB3k	    ; continue
	
ADD10k_NoDp:
	; no dp copy back number
	MOVF	OutPut+4,W
	MOVWF	OutPut+3

	; test for leading zeroes
	MOVLW	BYTE_OFFSET
	SUBWF	OutPut+3,w
	BTFSS	STATUS,Z
	BCF	_PrevIsSpace
	BNZ	SUB3k
	
	BTFSS	_PrevIsSpace
	GOTO	SUB3k

	; this digit is zero, and dp is not yet set
	; then downshift to space	
	BSF	_PrevIsSpace 
	BCF	OutPut+3,4 

SUB3k:
     	; subtract 3000 from sample
	MOVLW 	3
        ADDWF 	OutPut+5, f
        MOVLW 	low(3000)
        SUBWF 	Sample+2, f

	MOVLW 	low(3000>>8)
        SKPC
	MOVLW 	low(3000>>8)+1
        SUBWF 	Sample+1, f
	
        SKPNC	; negative ?
        GOTO 	SUB3k
ADD1k:
        ; add 1000 to sample
	DECF	OutPut+5, f
        MOVLW 	low(1000)
        ADDWF 	Sample+2, f

	MOVLW 	low(1000>>8)
        SKPNC
        MOVLW 	low(1000>>8) + 1
        ADDWF 	Sample+1, f
	
	SKPC
        GOTO 	ADD1k
	
	BTFSC	_DpUsed
	GOTO	SUB300_PreLoad	; dp is already used continue

	; test for dp
	DECFSZ	DpPlacement,F ; test for dp placement
	GOTO   	ADD1k_NoDp   ; no dp yet
	; place dp
	
	BSF	_DpUsed	    ; dp is used
	MOVLW	DECIMAL_POINT        ;
	MOVWF	OutPut+4    ; dp is fifth digit	
	
	; restore zero before dp
	BTFSC	_PrevIsSpace
	BSF	OutPut+3,4
	
	GOTO	SUB300_PreLoad	    ; continue
	
ADD1k_NoDp:
	; no dp copy back number
	MOVF	OutPut+5,W
	MOVWF	OutPut+4

	; test for leading zeroes
	MOVLW	BYTE_OFFSET
	SUBWF	OutPut+4,w
	BTFSS	STATUS,Z
	BCF	_PrevIsSpace
	BNZ	SUB300_PreLoad
	
	BTFSS	_PrevIsSpace
	GOTO	SUB300_PreLoad

	; this digit is zero, and dp is not yet set
	; then downshift to space	
	BSF	_PrevIsSpace 
	BCF	OutPut+4,4 

SUB300_PreLoad	
	MOVLW	BYTE_OFFSET
	MOVWF	OutPut+6
SUB300:
	; subtract 300 from sample
        MOVLW 	3
        ADDWF 	OutPut+6, f
        MOVLW 	low(300)
        SUBWF 	Sample+2, f

	MOVLW 	low(300>>8)
        SKPC
	MOVLW 	low(300>>8)+1
        SUBWF 	Sample+1, f

        SKPNC	; negative ?
        GOTO 	SUB300

        MOVLW 	100

ADD100:
	; add 100 to sample
        DECF 	OutPut+6, f
        ADDWF 	Sample+2, f
        SKPC
        GOTO 	ADD100
        INCF 	Sample+1, f
        BTFSC 	Sample+1, 7
        GOTO 	ADD100
		
	BTFSC	_DpUsed
	GOTO	SUB30_PreLoad	; dp is already used continue
	
	; test for dp
	DECFSZ	DpPlacement,F ; test for dp placement
	GOTO   	ADD100_NoDp   ; no dp yet
	; place dp
	BSF	_DpUsed	    ; dp is used
	MOVLW	DECIMAL_POINT        ;
	MOVWF	OutPut+5    ; dp is sixth digit	
	
	; restore zero before dp
	BTFSC	_PrevIsSpace
	BSF	OutPut+4,4

	GOTO	SUB30_PreLoad	    ; continue
	
ADD100_NoDp:
	; no dp copy back number
	MOVF	OutPut+6,W
	MOVWF	OutPut+5

	; test for leading zeroes
	MOVLW	BYTE_OFFSET
	SUBWF	OutPut+5,w
	BTFSS	STATUS,Z
	BCF	_PrevIsSpace
	BNZ	SUB30_PreLoad
	
	BTFSS	_PrevIsSpace
	GOTO	SUB30_PreLoad

	; this digit is zero, and dp is not yet set
	; then downshift to space	
	BSF	_PrevIsSpace 
	BCF	OutPut+5,4 


SUB30_PreLoad:
        MOVLW 	30
SUB30:
     	; subtract 30 from sample
	INCF 	OutPut+7, f
        SUBWF 	Sample+2, f
        SKPNC
        GOTO 	SUB30
        MOVFW 	OutPut+7
        RLF 	OutPut+7, f
        ADDWF 	OutPut+7, f
        MOVLW 	10

ADD10:
        ; add 10 to sample
	DECF 	OutPut+7, f
        ADDWF 	Sample+2, f
        SKPC
        GOTO 	ADD10
	
	MOVLW	BYTE_OFFSET
	ADDWF	OutPut+7,f

	BTFSC	_DpUsed
	GOTO	LAST_DIGIT		; dp is already used continue
	
	; test for dp
	DECFSZ	DpPlacement,F ; test for dp placement
	GOTO   	ADD10_NoDp   ; no dp yet
	; place dp
	BSF	_DpUsed	    ; dp is used
	MOVLW	DECIMAL_POINT        ;
	MOVWF	OutPut+6    ; dp is seventh digit	

	; restore zero before dp
	BTFSC	_PrevIsSpace
	BSF	OutPut+5,4
	
	GOTO	LAST_DIGIT   ; continue
	
ADD10_NoDp
	; no dp copy back number
	MOVF	OutPut+7,W
	MOVWF	OutPut+6
	; test for leading zeroes
	MOVLW	BYTE_OFFSET
	SUBWF	OutPut+6,w
	BNZ	LAST_DIGIT
	
	BTFSS	_PrevIsSpace
	GOTO	LAST_DIGIT

	; this digit is zero, and dp is not yet set
	; then downshift to space	
	BSF	_PrevIsSpace 
	BCF	OutPut+6,4 

LAST_DIGIT:

	MOVLW	BYTE_OFFSET
	ADDWF   Sample+2,w
	MOVWF	Sample+2
	
	BTFSS	_DpUsed
	MOVWF 	OutPut+7 ; save in previous byte
	BTFSC	_DpUsed
	GOTO	END_CONV
		
	DECFSZ	DpPlacement,F 	; test for dp placement
	GOTO   	CLEAR_LAST	; no dp used at all ??
	MOVLW	DECIMAL_POINT   ;
	MOVWF	OutPut+7    ; dp is eigth digit	

	; restore zero before dp
	BTFSC	_PrevIsSpace
	BSF	OutPut+6,4

	GOTO	END_CONV
CLEAR_LAST:
	; no dp used copy back number, and clear last digit
	BTFSS	_DpUsed
	CLRF	OutPut+8 ; clear last digit no dp used

END_CONV
	NOP	; done :-)
	GOTO MAIN




		END                       ; directive 'end of program'



Comments:


file: /Techref/microchip/math/radix/b2a-24b9d-lzmsdp-tk.htm, 20KB, , updated: 2003/12/16 11:03, local time: 2024/11/19 05:53,
TOP NEW HELP FIND: 
18.118.154.33:LOG IN

 ©2024 These pages are served without commercial sponsorship. (No popup ads, etc...).Bandwidth abuse increases hosting cost forcing sponsorship or shutdown. This server aggressively defends against automated copying for any reason including offline viewing, duplication, etc... Please respect this requirement and DO NOT RIP THIS SITE. Questions?
Please DO link to this page! Digg it! / MAKE!

<A HREF="http://linistepper.com/techref/microchip/math/radix/b2a-24b9d-lzmsdp-tk.htm"> PIC Microcontoller Radix Math Method </A>

After you find an appropriate page, you are invited to your to this massmind site! (posts will be visible only to you before review) Just type a nice message (short messages are blocked as spam) in the box and press the Post button. (HTML welcomed, but not the <A tag: Instead, use the link box to link to another page. A tutorial is available Members can login to post directly, become page editors, and be credited for their posts.


Link? Put it here: 
if you want a response, please enter your email address: 
Attn spammers: All posts are reviewed before being made visible to anyone other than the poster.
Did you find what you needed?