8-UART Virtual Peripheral
Implementation

% UBIcom

Application Note 40
April 2001

1.0 Introduction

The 8-UART Virtual peripheral uses the SX communica-
tions controller to provide asynchronous data communi-
cation for up to eight RS-232 interfaces. The Virtual
Peripheral has been developed using the SX Evaluation
Board and has been tested using the SX-Key interface
from Parallax Inc. and the SXIDE integrated development
environment from Advanced Transdata Inc.

Unlike other MCUs that add functions in the form of addi-
tional silicon, the SX Series uses its fast execution rate to
emulate peripheral functions in software modules, called
Virtual Peripherals. On-chip hardware peripherals are
only provided for functions that cannot be performed effi-
ciently in software, such as timers and analog compara-
tors.

1.1 Program Description

The 8-UART Virtual Peripheral implements eight UART
interfaces that can run at independent baud rates.
Because all eight UARTs operate simultaneously, data
transfer is much more efficient than implementations that
only handle one channel at a time.

The 8-UART Virtual Peripheral is designed to operate in
a multithreaded environment driven by the real-time
clock/counter (RTCC). Whenever an RTCC interrupt
occurs, an interrupt service routine (ISR) is called which
contains a multitasker for allocating CPU bandwidth
among any Virtual Peripherals which require interrupt
service. Each task is called a thread, and the 8-UART
Virtual Peripheral uses four threads that each handle two
UART interfaces. The threads are called i srThread1,
i srThread2, i srThread3, andi sr Thr ead4.

Ubicom™ and the Ubicom logo are trademarks of Ubicom, Inc.
All other trademarks mentioned in this document are property of their respec-
tive componies.

Before sending a character, software must check the
transmit flag for the UART to be used. If the flag is clear,
a character can be sent by setting the flag and calling the
sendbyt e routine. The Virtual Peripheral also features
the capability to send strings.

In the ISR multitasker, there are only four threads. Other
user Virtual Peripheral modules can be included within
the present four threads or new threads can be added
and the Numvalue changed accordingly.

© 2000 Ubicom, Inc. All rights reserved.

-1- www.ubicom.com

AN40 8-UART Virtual Peripheral Implementation

1.2 Interrupt Service Routine Flowchart for Thread n

withn=1,2,3,4

0
No
1
Decrement
szn_lDiVide Yes
¢ RX2n-1count=9
No . #
IS TX5,.1Divide=0 Load
szn_lDiVide
Decriment
Reload RXZn_lDiVide
TXon.1Divide
R Divide=0
Yes Is Xon-1DIVI
szn_lDivide:O
Load
szn_lDiVide
Transmit 1 bit ¢
of dataon UART
Receive Bit on
¢ UART 1
Decrement ¢
TXopn.1Count Decriment
RXZn—lCount
No
Is Rxon.1count=0
iYes ¢Yes
clear Set
rs232Txon.1Flag Rs232Rx,n,.1Flag
Figure 1. Interrupt Service Routine Figure 1-2. Interrupt Service Routine (continued)

© 2000 Ubicom, Inc. All rights reserved. -2- www.ubicom.com

8-UART Virtual Peripheral Implementation AN40

©

Is RXZnCount:O

No

Yes

‘o
‘t‘—@

Decrement No
Tx,Divide

¢ Yes
RX2n-1count=9

¢<

No

IS Tx,Divide=0

Load
Rx,,Divide
Reload &
TxonDivide Decriment
Rx,Divide

Yes

is No

RXonpivide=0

5

¢NO

Transmit 1 bit of Loa.d.
dataon UART szflwde
¢ Receive Bit
Decrement on UART,,
TXoncount
Decriment
RxonCount

No

Is No

RX2ncount=0
Yes

’F

Clear ¢ Yes
rs232Tx,,Flag
Set

Rs232Rx,,Flag

Figure 1-4. Interrupt Service Routine (continued)

@4

Figure 1-3. Interrupt Service Routine (continued)

© 2000 Ubicom, Inc. All rights reserved. -3- www.ubicom.com

AN40

8-UART Virtual Peripheral Implementation

2.0 Different Sections of UART Virtual
Peripheral

The source code for the UART Virtual Peripheral is
divided into four sections:

Equates Section
Bank Section
Initialization Section
Interrupt Section

When integrated into an application, each section of the
source code is inserted at an appropriate location in the
main body of the application’s source code.

2.1 Equates Section

The equates section provides the values of UARTDI vi de
and UARTSt Del ay and the port pin declarations.

The values of the constants are as follows:

The Pins are configured as follows:

UARTTf s = 230400

Num 4

Int Period = 217

UARTDI vi den = UARTf s/ (UARTBaudn * Num)

UARTSt Del ayn = UARTDI vi den + (UARTDI vi den/ 2) +1

n=1,2,3,4,56,7,0r8

Numis the number of times the UART Virtual Peripheral
ISR is called by the multitasker during one rotation. The
multitasker rotates interrupt service among four slots,
and the 8-UART Virtual Peripheral is called from all four
of these slots, so Numis 4 in this example. In other appli-
cations, Nummight have a different value. For example, if
the interrupt frequency were faster or the baud rate were
slower, one slot might be sufficient to service the 8-UART
Virtual Peripheral ISR.

The pins for sending and receiving data are defined in
this section. Port A, Port B, and Port C are used for the
external interface.

r s232Rxpi nl equ ra.2 ; UART1 receive input
rs232Txpi nl equ ra.3 ; UART1 transnit out put
r s232Rxpi n2 equ rb.2 ; UART2 receive input
rs232Txpi n2 equ rb.3 ; UART2 transnit out put
r s232Rxpi n3 equ rb. 4 ; UART3 receive input
rs232Txpi n3 equ rb.5 ; UART3 transnit out put
r s232Rxpi n4 equ rb. 6 ; UART4 receive input
rs232Txpi n4 equ rb.7 ; UART4 transnit out put
r s232Rxpi n5 equ rc.0 ; UART5 receive input
rs232Txpi n5 equ rc.1 ; UARTS5 transnit out put
r s232Rxpi n6 equ rc.2 ; UART6 receive input
rs232Txpi n6 equ rc.3 ; UART6 transnmit output
r s232Rxpi n7 equ rc.4 ; UART7 receive input
rs232Txpi n7 equ rc.5 ; UART7 transnit out put
r s232Rxpi n8 equ rc.6 ; UART8 receive input
rs232Txpi n8 equ rc.7 ; UART8 transnit output

The baud rates for each of the UARTs are specified by

using IFDEF statements. The baud rate is equal to the
number that represents it in the commented statement.

For example, if the uart 1baud1920 is uncommented,
UART 1 is configured for a baud rate of 19200 baud.
Similarly, if uart 2baud9600 is uncommented, UART 2 is
configured for a baud rate of 9600 baud.

© 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com

8-UART Virtual Peripheral Implementation AN40

2.2 Bank Section

This section describes the use of the banks in the 8 UART Virtual Peripheral implementation. 5 banks are used in the 8
UART Virtual Peripheral module (BANK1 to BANK5). BANK1 and BANK2 are used for defining all the variables of the
8 transmit routines of the UART and BANK3 and BANK4 are used for defining all the variables of the 8 receive routines
of the UART.

All the flags are defined in the global register bank.

org gl obal _org
R e T VP: RS232 TransSmit ------ommmmm oo
flagsO equ global _org + 0O
rs232Tx1Fl ag equ flags0.0 ;indicates the Uartl tx
rs232Tx2Fl ag equ flags0.1 ;indicates the Uart2 tx
rs232Tx3Fl ag equ flags0. 2 ;indicates the Uart3 tx
rs232Tx4Fl ag equ flags0.3 ;indicates the Uart4 tx
rs232Tx5FI ag equ flags0.4 ;indicates the Uart5 tx
rs232Tx6Fl ag equ flags0.5 ;indicates the Uart6 tx
rs232Tx7Fl ag equ flags0.6 ;indicates the Uart7 tx
rs232Tx8Fl ag equ flags0.7 ;indicates the Uart8 tx
------------------------------- VP: RS232 ReCEeI Ve ------ oo mmm e
flagsl equ global _org + 1
r s232RxFl agl equ flagsl.0 ;indicates the reception of a bit fromthe UART1
r s232RxFl ag2 equ flagsl. 1 ;indicates the reception of a bit fromthe UART2
r s232RxFl ag3 equ flagsl. 2 ;indicates the reception of a bit fromthe UART3
r s232RxFl ag4 equ flagsl. 3 ;indicates the reception of a bit fromthe UART4
r s232RxFl ag5 equ flagsl. 4 ;indicates the reception of a bit fromthe UARTS
r s232RxFl ag6 equ flagsl. 5 ;indicates the reception of a bit fromthe UART6
r s232RxFl ag7 equ flagsl. 6 ;indicates the reception of a bit fromthe UART7
r s232RxFl ag8 equ flagsl. 7 ;indicates the reception of a bit fromthe UART8
org bankl_org
bank1 = $
rs232TxBank1234 = $; UART bank
rs232Txhi ghl ds 1 ;hi byte to transmt
rs232Tx| owl ds 1 ;low byte to transmit
rs232Txcount 1 ds 1 ; number of bits sent
rs232Txdi vi del ds 1 ;xmt timng (/16) counter
rs232Txhi gh2 ds 1 ;hi byte to transmt
rs232Tx| ow2 ds 1 ;low byte to transmt
rs232Txcount 2 ds 1 ; number of bits sent
rs232Txdi vi de2 ds 1 ;xmt timng (/16) counter
rs232Txhi gh3 ds 1 ;hi byte to transmt
rs232Tx| ow3d ds 1 ;low byte to transmt
rs232Txcount 3 ds 1 ; number of bits sent
rs232Txdi vi de3 ds 1 ;xmt timng (/16) counter
rs232Txhi gh4 ds 1 ;hi byte to transmt
rs232Txl ow4 ds 1 ;low byte to transmt
rs232Txcount 4 ds 1 ; number of bits sent
rs232Txdi vi de4d ds 1 ;xmt timng (/16) counter
org bank2_ org
bank2 = $
rs232TxBank5678 = $; UART bank
rs232Txhi gh5 ds 1 ;hi byte to transmt

© 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com

AN40

8-UART Virtual Peripheral Implementation

rs232TxI| ows
rs232Txcount 5
rs232Txdi vi deb
rs232Txhi gh6
rs232Tx| owé
rs232Txcount 6
rs232Txdi vi de6
rs232Txhi gh7
rs232TxI| ow7
rs232Txcount 7
rs232Txdi vi de7
rs232Txhi gh8
rs232Tx| ow8
rs232Txcount 8
rs232Txdi vi de8

org bank3_ org

bank3
rs232RxBank1234
rs232Rxcount 1
rs232Rxdi vi del
rs232Rxbyt el
rs232bytel
rs232Rxcount 2
rs232Rxdi vi de2
r s232Rxbyt e2
rs232byt e2
rs232Rxcount 3
rs232Rxdi vi de3
r s232Rxbyt e3
rs232byte3
rs232Rxcount 4
rs232Rxdi vi de4
r s232Rxbyt e4
rs232byte4d

org bank4_org

bank4

r s232RxBank5678
rs232Rxcount 5
rs232Rxdi vi deb
r s232Rxbyt e5
rs232byt e5
rs232Rxcount 6
rs232Rxdi vi de6
r s232Rxbyt e6
rs232byt e6
rs232Rxcount 7
rs232Rxdi vi de7
r s232Rxbyt e7
rs232byt e7
rs232Rxcount 8
rs232Rxdi vi de8

ds
ds
ds
ds
ds
ds
ds
ds
ds
ds
ds
ds
ds
ds
ds

ds
ds
ds
ds
ds
ds
ds
ds
ds
ds
ds
ds
ds
ds
ds
ds

ds
ds
ds
ds
ds
ds
ds
ds
ds
ds
ds
ds
ds
ds

PR RPRRRPRPRRREPRPRREPREPRRERE®SSH PR RPRRRPRPRRPRREPRPRRERRRR

PR RPRRRPRPRREPREPRRERRE®G®H

;low byte to transmt

)

;xmt timing (/16) counter

)

)

;xmt timng (/16) counter

1

)

;xmit timng (/16) counter

)

1

;xmit timng (/16) counter

)

)

)

nunber of bi

ts sent

hi byte to transmt
;low byte to transmt

nunber of bi

ts sent

hi byte to transmt
;low byte to transmt

nunber of bi

ts sent

hi byte to transmt
;low byte to transmt

nunber of bi

;nunber of bi
;receive tim
cbuffer for i

used by seri
nunber of bi
receive tim
buffer for i
used by seri
nunber of bi
receive tim
buffer for i
used by seri
nunber of bi
receive tim
buffer for i
used by seri

nunber of bi
receive tim
buffer for i
used by seri
nunber of bi
receive tim
buffer for i
used by seri
nunber of bi
receive tim
buffer for i
used by seri
nunber of bi

;receive tim

ts sent

ts received
ng counter
nconi ng byte
al routines
ts received
ng counter
nconi ng byte
al routines
ts received
ng counter
nconi ng byte
al routines
ts received
ng counter
nconmi ng byte
al routines

ts received
ng counter
nconmi ng byte
al routines
ts received
ng counter
nconi ng byte
al routines
ts received
ng counter
nconmi ng byte
al routines
ts received
ng counter

© 2000 Ubicom, Inc. All rights reserved.

www.ubicom.com

8-UART Virtual Peripheral Implementation AN40

r s232Rxbyt e8 ds 1 ;buffer for incoming byte
rs232byt e8 ds 1 ;used by serial routines

org bank5_org

bank5 = $
Mul ti pl exBank = $
i sriultiplex ds 1

© 2000 Ubicom, Inc. All rights reserved. -7- www.ubicom.com

AN40 8-UART Virtual Peripheral Implementation

2.3 Initialization Section

This provides the initialization part of the UART Virtual
Peripheral. This has to be included before the main loop
starts with the initialization of all other ports and registers.

_bank rs232TxBank ; select rs232 bank
nmov w, #UARTDi vi den ;load TxDivide with UART baud rate
mov rs232TxDi vi den, w

wheren =1,2,3,4,5,6,7,8

Initialization is required to send the data at the desired
baud rate. The value of UART1di vi de specifies the num-
ber of times the interrupt has to be serviced before a bit is
transmitted. For example, at 9600 baud the value of
UART1di vi de is 6, which means that a bit is transmitted
once for every six times the respective thread is called.

© 2000 Ubicom, Inc. All rights reserved. -8- www.ubicom.com

8-UART Virtual Peripheral Implementation AN40

2.4 Interrupt Section
The flow of the interrupt service routine is shown in Figure 2-1.

The ISR returns with a "retiw" value of -217 every 4.32 microseconds at an oscillator frequency of 50 MHz.

RS EE SRS SRS EEESES]
org | NTERRUPT_ORG ; First location in program nmenory.

IR R EE SRS SRS EES]

B b O S O I S R R O O R O
)

i TR Interrupt Service Routine ------------mmommmm

; Note: The interrupt code nmust always originate at address $0.

; Interrupt Frequency = (Cycle Frequency / -(retiw value)) For exanple:

; Wth a retiw value of -217 and an oscillator frequency of 50MHz, this

; code runs every 4.32us.

;***
org $0

i nterrupt 13

B I b S O S I R O O
)

; Interrupt
; Interrupt Frequency = (Cycle Frequency / -(retiw value)) For exanple:
; Wth a retiw value of -217 and an oscillator frequency of 50MHz, this code runs

; every 4.32us.
IR S R R SRR SRR SRR SRR R RS R E R R R RS R RS EEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS EEEEEEEEEEESE]
;

EEE I b S O S I S S
)

R e VP: VP Multitasker--------cccmmmmmmoom e et
; Virtual Peripheral Multitasker : up to 16 individual threads, each running at the

; (interrupt rate/ 16). Change then bel ow

;I nput variable(s): isrMiltiplex: variable used to choose threads

; Qut put variabl e(s): None, executes the next thread

;Variabl e(s) affected: isrMiltiplex

; Flag(s) affected: None

; Program Cycl es: 9 cycles (turbo node)
RS EE S EEEEEEEEEEEEEEEEREEES]
;

__bank Mul ti pl exbank ;
inc isrMultiplex ; toggle interrupt rate
nov w, i srMultipl ex ;

B b S O Ik R O I
1

; The code between the tableStart and tabl eEnd statenents MJUST be conpletely within the first

; half of a page. The routines it is junping to nust be in the same page as this table.

EE I b S O S I O R O R I R O I
1

tabl eStart ; Start all tables with this macro
jnp pc+w ;
jmp i srThreadl ;
jmp i srThread2 ;
jmp i srThread3 ;
jmp i srThread4 ;
t abl eEnd : End all tables with this nmacro.

EE I kI S O R R R O
1

:VP: VP Multitasker

;| SR TASKS
IR S R RS RS SRR SRS S SRR R R R R R SRR R RS R EREEE SRS RS RS EEEEEEESE]
i srThreadl ; Serviced at |SRrate/4

EE I b S O O I O S R S O
’

; Virtual Peripheral: Universal Asynchronous Receiver Transmitter (UART) These routines send
; and receive RS232 serial data, and are currently configured (though nodifications can be
; made) for the popular "No parity-checking, 8 data bit, 1 stop bit" (N,8,1) data format.

© 2000 Ubicom, Inc. All rights reserved. -9- www.ubicom.com

AN40 8-UART Virtual Peripheral Implementation

; The VP bel ow has 8 UARTS i npl emented -
; Baud Rates.

UART1 to UART8 can work at independent

; RECEIVING The rs232Rx1fl ag & rs232Rx2fl ag are set high whenever a valid byte of data has
; been received and it is the calling routine's responsibility to reset this flag once the
; incom ng data has been col | ected.

; TRANSM TTING The transmt
7 (rs232Txhi gh+r s232Tx| ow)

; register.

regi ster
; 1s232Txhi gh and rs232Txl ow bit
; ready for transmi ssion (10=1 start
As soon as this latter

7 set

pair

is done,

high to act as a start bit).
+ 8 data + 1 stop) must
the transmt

routine requires the data to be inverted and | oaded
(with the inverted 8 data bits stored in
Then t he nunber
be | oaded into the rs232Txcount
routine i medi ately begi ns sendi ng

; the data. This routine has a varying execution rate and therefore should al ways be

; placed after any timng-critical

; adcs, pwrs, etc.
: Not e:

; of the UARTSs.

The initial

virtual

The transnit and receive routines are independent and either
" bank rs232TxBank" & " bank rs232RxBank"

; instruction is kept for Transmit & Receive routines.

; I nput vari abl e(s):

; I nput Fl ag(s):

; Cut put vari abl e(s):

; Vari abl e(s) affected :

; Fl ag(s) affected:

; Program cycl es:
; Vari abl e Length?

EEE R b O Sk O Ik S S R R R O R
)

rs232Transmtl
__bank

rs232TxLowd,
rs232TxLow2,
rs232TxLow3,
rs232TxLow4,
rs232TxLows,
rs232TxLowe,
rs232TxLow?,
rs232TxLows,

rs232Tx1Fl ag,
r s232Tx5FI ag,

rs232Rx1byt e,
r s232Rx5byt e,

rs232Txdi vi del,
rs232Txdi vi deb,
rs232Txcount 1,
rs232Txcount 5,
rs232Rxdi vi del,
rs232Rxdi vi deb,
rs232Rxcount 1,
rs232Rxcount 5,

rs232Tx1Fl ag,
r s232Tx5FI ag,
r s232Rx1Fl ag,
r s232Rx5FI ag,

32 worst case for Tx,

Yes.

rs232TxBank1234 ;

sb rs232Tx1Fl ag ;

rs232TxHi ghl,
rs232TxHi gh2,
rs232TxHi ghs3,
rs232TxHi gh4,
rs232TxHi ghb,
rs232TxHi ghé,
rs232TxHi gh7,
rs232TxHi gh8,

rs232Tx2Fl ag,
rs232Tx6Fl ag,

rs232Rx2byt e,
rs232Rx6bhyt e,

rs232Txdi vi
rs232Txdi vi

rs232Txcount 2,
rs232Txcount 6,

r s232Rxdi vi
r s232Rxdi vi

rs232Rxcount 2,
rs232Rxcount 6,

rs232Tx2Fl ag,
rs232Tx6Fl ag,
r s232Rx1Fl ag,
r s232Rx6Fl ag,

switch to serial
Is data there for

33 wor st

peri pheral s such as tinmers,

rs232TxCount 1
rs232TxCount 2
rs232TxCount 3
rs232TxCount 4
rs232TxCount 5
rs232TxCount 6
rs232TxCount 7
rs232TxCount 8

r s232Tx3Fl ag,
rs232Tx7Fl ag,

r s232Rx3byt e,
rs232Rx7hyt e,

de2,
de6,

de2,
de6,

r s232Tx3Fl ag,
rs232Tx7Fl ag,
r s232Rx3Fl ag,
r s232Rx7Fl ag,

register
UART1,

rs232Txdi vi de3,
rs232Txdi vi de7,
rs232Txcount 3,
rs232Txcount 7,
r s232Rxdi vi de3,
rs232Rxdi vi de7,
rs232Rxcount 3,
rs232Rxcount 7,

case for Rx

may be renoved for each
(conmon)

rs232Tx4Fl ag
rs232Tx8Fl ag

rs232Rx4byt e
rs232Rx8byt e

rs232Tx4Fl ag
rs232Tx8Fl ag
r s232Rx4Fl ag
rs232Rx8Fl ag

bank

© 2000 Ubicom, Inc. All rights reserved.

-10 -

www.ubicom.com

of bits

rs232Txdi vi de4
rs232Txdi vi de8,
rs232Txcount 4
rs232Txcount 8
rs232Rxdi vi de4
rs232Rxdi vi de8,
rs232Rxcount 4
rs232Rxcount 8

8-UART Virtual Peripheral Implementation

AN40

jmp
decsz
jmp
nov

nov

t est
snz

j mp

ctxbit clc
rr
rr
dec
snb
clrb
sb
setb
| FNDEF sendString
t est
snz
clrb
ENDI F
1rs232TxQut 1

1rs232TxCQut 1
rs232TxDi vi del
1rs232TxCQut 1
w, #UARTDI vi del

rs232TxDi vi del, w

rs232TxCount 1

1 rs232TxCut 1;

rs232TxH ghl
rs232TxLowl
rs232TxCount 1
rs232TxLowl. 6
rs232TxPi nl
rs232TxLowl. 6
rs232TxPi nl

rs232TxCount 1

rs232Tx1Fl ag

)

1

then execute the Tx routine otherw se don't.
enter Tx routine until Divide val becones zero
i.e don't enter the Tx routine

If Divide val beconmes 0 & enters the Tx routine,
then again | oad the

Divide val for not to enter the Tx routine 'Divide'
tinmes for next bit

I f count becomes Zero then also don't enter

after all barriers then only it will cone here
i.e Txflag = hi, Divide=0, count !'=0

right shift Tx data

right shift rs232TxLow which contains start bit
decrenent bit counter

if the bit in viewi ng wi ndow is hi

Then nake transmit pin lo

if the bit in viewing windowis |lo

Then nake transnmit pin hi

If not sendstring

test count

if zero

then clear the Tx flag & cone out

BRI Ik O o O O O R O S R

rs232Recei vel
sb
clc
snb
stc
__bank
t est
sz

j mp

crxbit decsz

sz
rr
snz
setb

1 rs232RxQut 1

rs232RxPi n1
rs232RxPi n1

rs232RxBank1234
rs232RxCount 1

:rxbit
w, #9

rs232RxCount 1, w
w, #UARTSt Del ay1
rs232RxDi vi del, w
rs232RxDi vi del

1 rs232RxCQut 1

w, #UARTDI vi del
rs232RxDi vi del, w
rs232RxCount 1

rs232RxByt el

rs232Rx1Fl ag

get current rx bit

if bit is zero clear the carry
ot her wi se

set the carrry

test the Rx count

If zero then only | oad the Rxcount

if so, junmp ahead

in case start, ready 9 bits

if not start bit don't |oad the count
it is, so load bit count

ready 1.5 bit periods (50MHz)

| oad fresh Divide val ue

If Divide value is not zero after dec
then don't go into Rx routine

If yes, load fresh Divide val for next bit

dec the count

check for Rxcount val ue

if zero rotate the buf to save the received bits
check for Rxcount val ue

if zero set the Rx flag to indicate the

conpl ete reception of the byte

Note:The above code implemented for one UART is similar for the remaining 7 UART's. There are 2 UARTS inserted in
each isrThread. In isrThread4 the "isrMultiplexer" value is reset to 255 as shown below

i srultiplex, #255

; reload isrMiltiplex soisrThreadl will be run on the

© 2000 Ubicom, Inc. All rights reserved.

-11- www.ubicom.com

AN40 8-UART Virtual Peripheral Implementation

; next interrupt.

jmp i srQut ; cycles until mainline programresunes execution
; This thread must reload the isrMiltiplex register
; since it is the last one to run in a rotation.

i srQut

BRI Ik O O b O S R S R
1

; Set Interrupt Rate

BRI R O S R S O S R
1

i sr_end

| FDEF SX_28AC
Mov w, i sr TenpO ; Restore the node register val ue.
nov m w

ENDI F
nmov w, #- i nt peri od :refresh RTCC on return

; (RTCC = 216-no of instructions
;executed in the | SR Routi ne)

retiw
BRI Ik O O O
1

© 2000 Ubicom, Inc. All rights reserved. -12 - www.ubicom.com

8-UART Virtual Peripheral Implementation

AN40

3.0 Baud Rate Generation and Timing

As an example of calculating the parameters which con-
trol the timing of the 8-UART Virtual Peripheral, consider
transmitting data at 57600 baud with four times oversam-
pling (i.e. a sampling frequency of 230.4 kHz).

Transmission time for 1 bit = 1/57600 seconds

The divide ratio UARTdi vi de for the above example is the
sampling rate divided by the baud rate and the number of
slots for the 8-UART Virtual Peripheral ISR in the multi-
tasker (i.e. Num).

So the formula for UARTdi vi de is:

UARTdi vi de = UARTf s/ (UARTbaudrate * Num
= 230400/ (57600 * 4) =1

Therefore, setting UARTdi vi de to 1 results in the desired
baud rate. In receive mode, the baud rate is calculated in
the same way, except that a constant called UARTst art -
del ay is used to skip over the start bit. This constant is
equal to 1.5 times the baud period. Its purpose is to
ensure that the bits are sampled near the middle of each
pulse. Separate UARTDi vi de and UARTSt Del ay con-
stants are used for each UART (e.g. UARTSt Del ayl is
used for UART 1, and UARTSt Del ay2 is used for UART
2).

© 2000 Ubicom, Inc. All rights reserved.

-13-

www.ubicom.com

AN40

8-UART Virtual Peripheral Implementation

3.1 Circuit Design Procedure

The simplest version of the circuit requires two port pins
for transmit and receive. If hardware handshaking is

interface only requires a driver for converting the voltage

used, additional port lines are required. The hardware

X1
- » TX1
| —p
Ubicom SX @ RS-232 D-Type
. Line Driver Connector
| (MAX-232)
RX1 1
RX1
A
X 2
™2 X 2
rs22 |)
' g D-Type
Line Driver Connector
R (M AX-232) «—
RX2
TX3
—p
RS-232 D-Type
Line Driver Connector
Ly (MAX23) RX3
—
TX 8
re22 |
' : D-Type
Line Driver Connector
MAX-232) | RX8 |

Figure 3-1. Circuit Block Diagram

level of the signals. The same concept can be used to
extend and configure two or more independent UARTSs.

© 2000 Ubicom, Inc. All rights reserved.

-14 -

www.ubicom.com

8-UART Virtual Peripheral Implementation

AN40

4.0 Applications

The program is written for a simple UART without hard-
ware handshaking, but it can be modified to include
handshaking.

Because this implementation has two UARTs which can
be configured for independent baud rates, it can be used
in applications communication with two MCUs or periph-
erals operating at different baud rates.

5.0 TESTING

5.1 Hardware Set Up

e Sx28-52 Demo Board with extra D-Type connector and
MAX232 chip.

« Berg pins are provided for the transmit and receive
data pins of both connectors.

» Berg pins are also provided for each port pin (i.e. RA2,
RA3, RB2, RB3, Rb4, RB5, RB6, RB7, RCO, RC1,
RC2, RC3, RC4, RC5, RC6, and RC7), so that all ports
can be used alternately with two connectors (one de-
fault available on the board and the other wired).

e Out of the 8 UARTSs (16 port pins), two UARTSs can be
tested at a time using the two MAX232 drivers.

* HyperTerminal serial communications program (includ-
ed with Windows) setup for the UART baud rate.

5.1.1 TEST1

For this test, uncomment stringTransfer. This test
uses the sendSt ri ng and get byt e routines

« Inthis test, a string stored in the specified location can
be sent to eight HyperTerminal applications running on
eight PCs using the 8-UART Virtual Peripheral running
on the SX28-52 Demo Board. First, the message string
“Hit spacebar” is transmitted. To test any UART, con-
nect the corresponding UART transmit and receive port
pins to one of the two MAX232 driver pins provided on
the board. For example, to send the string through
UART 2 and UART 3, connect the transmit (RB3 and
RB5) and receive (RB2 and RB4) pins of the UART to
the two MAX232 transmit and receive pins. Uncom-
ment the lines set b rs232TxFl ag2 and set b
r s232TxFl ag3 in Example 1 of the code, and run the
program.

i.e. RB2 --- Rx1
RB3 --- Tx1
RB4 --- Rx2
RB5 --- Tx2

Observe the message in the respective HyperTerminal
windows. Hit space bar to receive the message by
uncommenting and calling cal | @et Byt el (or the cor-
responding get byte call for the UART). The message
"Yup,The UART works !II" will be transmitted to the
HyperTerminal window connected to the corresponding
UART.

5.1.2 TEST2

For this test, uncomment byt eTr ansf er. This test uses
get Byt e() and sendByt e() routines using Example 2.

« Get a byte from one HyperTerminal and display it on
the same HyperTerminal.

To test UART 2, uncomment call @etByte2 and
rs232TxFl ag2, and run the program. This test can be run
for any UART by uncommenting the respective cal |
@et Byt e and r s232TxFl ag, and connecting the UART’s
port pins to the transmit and receive pins of the MAX232.
Bytes can be received from more than one UART at a
time by running the respective cal | @et Byt e, but there
is one restriction. If the get Byt el function is running first,
the function is locked until it receives a byte on the corre-
sponding UART. The program will continue to get bytes
from the other UART or UARTSs only after the get Byt el
function returns.

5.1.3 TEST3

For this test, uncomment fi | eTr ansf er. This test uses
get Byt e() and sendByt e() routines using Example 3.

e Totransfer a text file through UART1 and display it in a
HyperTerminal window, uncomment r s232TxFl agl
and cal | @et Byt el, and run the program. To transfer
a file using HyperTerminal, use the Transfer tool bar
and choose the Send File option, which will prompt you
to choose a text file. Using this method, any of the
UARTS can be tested by uncommenting their respec-
tive cal | @yet Byt e and r s232TxFl ag functions.

© 2000 Ubicom, Inc. All rights reserved.

-15-

www.ubicom.com

AN40 8-UART Virtual Peripheral Implementation

Lit #: AN40-02

Sales and Tech Support Contact Information

For the latest contact and support information on SX devices, please visit the Ubicom website at www.ubicom.com.
The site contains technical literature, local sales contacts, tech support and many other features.

1330 Charleston Road
Mountain View, CA 94043

Contact: sales@ubicom.com

U B | ([] m http://www.ubicom.com
Tel.: (650) 210-1500

Fax: (650) 210-8715

© 2000 Ubicom, Inc. All rights reserved. -16 - www.ubicom.com

